Construction of a 3D Object Recognition and Manipulation Database from Grasp Demonstrations

نویسنده

  • Michael Gennert
چکیده

Object recognition and manipulation are critical for enabling robots to operate within a household environment. There are many grasp planners that can estimate grasps based on object shape, but these approaches often perform poorly because they miss key information about non-visual object characteristics, such as weight distribution, fragility of materials, and usability characteristics. Object model databases can account for this information, but existing methods for constructing 3D object recognition databases are time and resource intensive, often requiring specialized equipment, and are therefore di cult to apply to robots in the eld. We present an easy-to-use system for constructing object models for 3D object recognition and manipulation made possible by advances in web robotics. The database consists of point clouds generated using a novel iterative point cloud registration algorithm, which includes the encoding of manipulation data and usability characteristics. The system requires no additional equipment other than the robot itself, and non-expert users can demonstrate grasps through an intuitive web interface with virtually no training required. We validate the system with data collected from both a crowdsourcing user study and a set of grasps demonstrated by an expert user. We show that the crowdsourced grasps can produce successful autonomous grasps, and furthermore the demonstration approach outperforms purely vision-based grasp planning approaches for a wide variety of object classes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction of a 3D object recognition and manipulation database from grasp demonstrations

Object recognition and manipulation are critical for enabling robots to operate in household environments. Many grasp planners can estimate grasps based on object shape, but they ignore key information about non-visual object characteristics. Object model databases can account for this information, but existing methods for database construction are time and resource intensive. We present an eas...

متن کامل

Passive Non-Prehensile Manipulation of a Specific Object on Predictable Helix Path Based on Mechanical Intelligence

Object manipulation techniques in robotics can be categorized in two major groups including manipulation with and without grasp. The aim of this paper is to develop an object manipulation method where in addition to being grasp-less, the manipulation task is done in a passive approach. In this method, linear and angular positions of the object are changed and its manipulation path is controlled...

متن کامل

Optimal Trajectory Planning of a Box Transporter Mobile Robot

This paper aims to discuss the requirements of safe and smooth trajectory planning of transporter mobile robots to perform non-prehensile object manipulation task. In non-prehensile approach, the robot and the object must keep their grasp-less contact during manipulation task. To this end, dynamic grasp concept is employed for a box manipulation task and corresponding conditions are obtained an...

متن کامل

E cient 3D Object Perception and Grasp Planning for Mobile Manipulation in Domestic Environments

In this article, we describe e cient methods for tackling everyday mobile manipulation tasks that require object pick-up. In order to achieve real-time performance in complex environments, we focus our approach on fast yet robust solutions. For 3D perception of objects on planar surfaces, we develop scene segmentation methods that process depth images in real-time at high frame rates. We e cien...

متن کامل

Robot Learning Manipulation Action Plans by "Watching" Unconstrained Videos from the World Wide Web

In order to advance action generation and creation in robots beyond simple learned schemas we need computational tools that allow us to automatically interpret and represent human actions. This paper presents a system that learns manipulation action plans by processing unconstrained videos from the World Wide Web. Its goal is to robustly generate the sequence of atomic actions of seen longer ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014